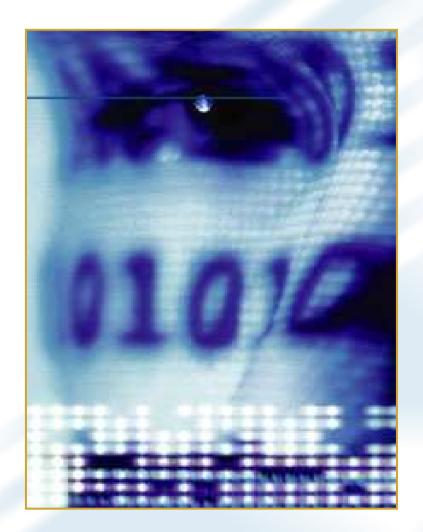
Capacity Planning: Engineering Infrastructure Performance



Business and Technology Scenario

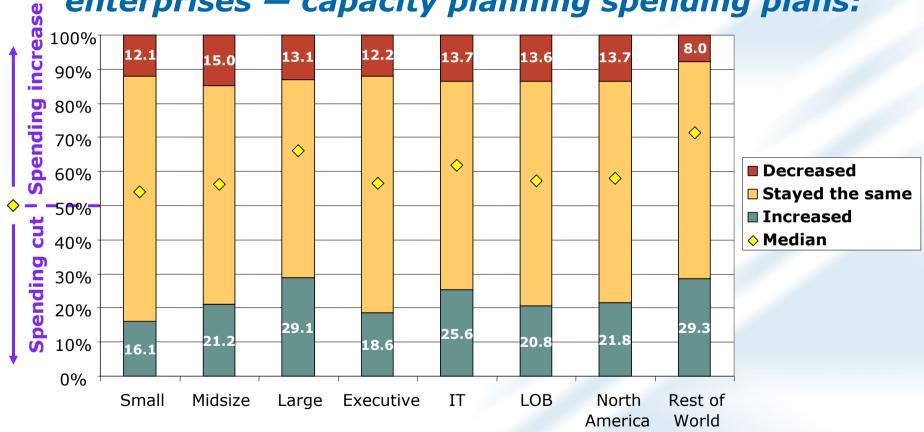
- Data center consolidation is forcing IT organizations to evaluate overall performance
- Budget pressures are forcing more prudent resource utilization and infrastructure purchasing
- Overall discipline in IT infrastructure planning has been dismal and needs to improve
- IT organizations must minimize capital expenditures while preserving good service
- Growing operational process maturity requires better accountability and information sharing across processes

Critical Issues

- Fine-tune IT services by optimizing infrastructure performance
- Address the challenges of capacity planning in distributed environments
- Technology solutions for capacity planning

Optimizing Infrastructure Performance

- 2003 IAM study results on capacity planning
- Business drivers for capacity planning
- Preemptive performance planning approaches
- Engineering discipline yields superior quality and efficiency


Balance Capacity for Optimum Performance and Cost Effectiveness

Balance performance and cost through a structured capacity planning process

2003 IAM Study Results

Capacity planning is the #1 critical issue for large enterprises — capacity planning spending plans:

Budget for capacity planning technology and staff to address changing business demands

Capacity Planning Business Drivers

Costs need to be reduced

- Operational expenses
- Capital expenses
- A Resource utilization is low (data center higher)
 - Windows average is 10%-15%
 - Unix average is 20%
- Consolidation
- Growing operational maturity spawns strong capacity planning
- Excess capacity can no longer mask demands

Avoid sloppiness in provisioning of excess capacity in favor of engineering discipline

© 2003 META Group, Inc., Stamford, CT-USA, +1 (203) 973-6700, metagroup.com

Feedback in Engineered

Development Flows

Improvement Iterations

Developmental Progress

Test

Deploy

Build

Quality Through Engineering Discipline

- Complex systems follow structured engineering preceding production
 - Autos, aerospace, semiconductors
 - IT systems are complex and must be treated likewise
- Engineering discipline prevents costly redesign
- Capacity planning helps fulfill this discipline

Engineering 101: Employ several evaluation approaches; no one method fulfills all needs

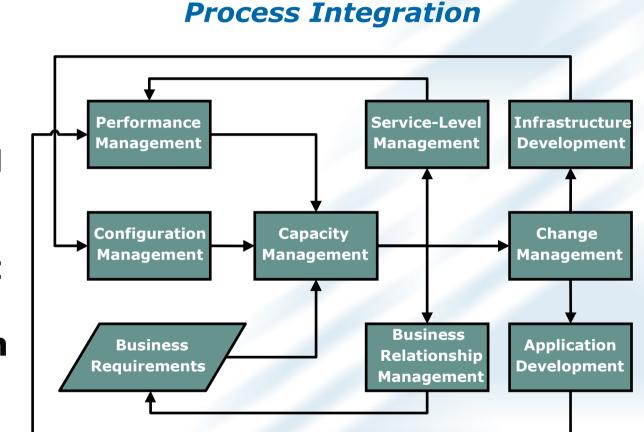
Design

Model

Performance Planning Approaches

- Incident analysis
 - Performance triggers
 - Long-term patterns
- Performance trending
 - Be careful results can be misleading
- Modeling/simulation
- Evaluate both peak periods and averages

Classify Utilization for Consolidation Candidates



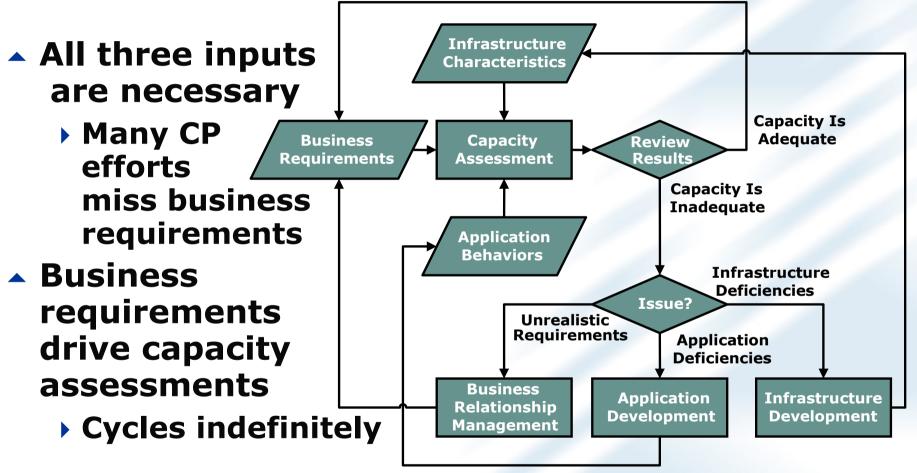
Combine people, processes, and technology to address distributed system complexity

Distributed Capacity Planning

Capacity Planning in Distributed Systems

- Distributed introduces new:
 - Complexity
 - Operational maturity
- Process development
- Server consolidation
- End-to-end efforts

Leverage lessons learned from decades of legacy capacity planning

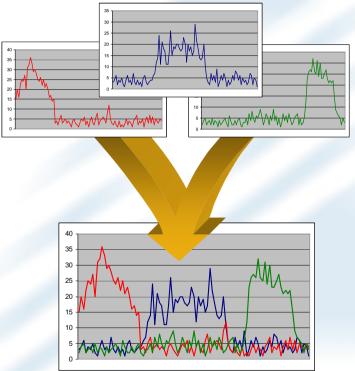

Borrow Structure From the Mainframe

- Mainframe capacity planning is mature but inflexible
- Far more distributed system complexity
 - Mainframe is more tightly contained and homogenous
 - Mainframe relationships are more static
 - Legacy system capacity provisioning is mature
 - Distributed systems will get more complex
- Legacy operations exhibit strong discipline
 - Distributed operations need to become more conservative

Build on established mainframe processes for distributed capacity planning

Distributed Capacity Planning

Process Development


Optimize capacity and performance with a disciplined, consistent engineering process

Distributed Capacity Planning

Server Consolidation

- Provides optimization, but watch usage patterns
 - Geographic and LOB user communities
 - Capacity of network and other supporting factors
 - Application protocols
- Understand user impact
 - Blind consolidation can cause major business disruption

Workload Balancing via Consolidated Loads

Consider all infrastructure, applications, and users when embarking on consolidation

End-to-End Capacity Planning

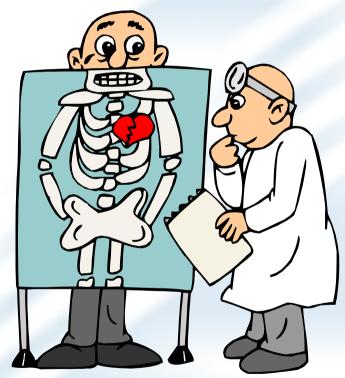
- A focus on technology silos is the norm
 - A myopic history of silo-based operations
 - Technology limitations
- End-to-end is the desired state
 - Server, storage, and network are merging
 - Endpoint inclusion will follow
- Adaptive organization and Web services will change everything
 - Highly dynamic relationships
 - Capacity on demand will automate some tasks

Optimize silos until capacity planning technology solutions evolve for end-to-end

Capacity Planning Technology Solutions

- Understand the "magic" within planning tools
- Application-oriented infrastructure tuning
- Modeling and simulation
- Vendor landscape

Capacity Measurement Accuracy Is Imperative

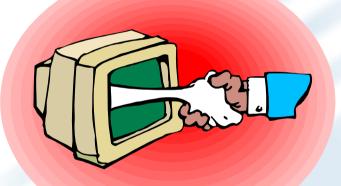

Acquire sufficient platforms for the intensive mathematical processing demands of tools

The Inner Workings of Planning Tools

Statistical analysis

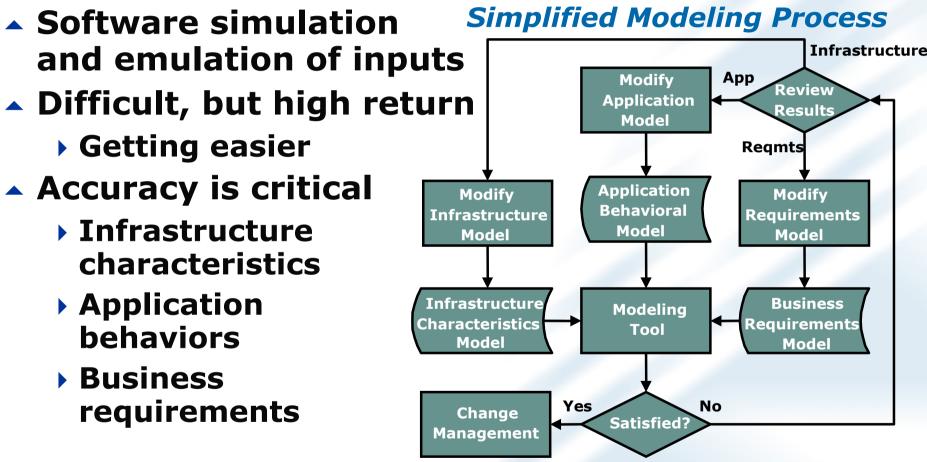
- Based on advanced performance management
- New innovations emerging from astrophysics, quantum mechanics, and bioinformatics
- Queuing theory models data flows through a system
- Discrete simulation is slow, but extremely precise

Gain Visibility Into Internal Technology Functions



Blend capacity planning skills in operations research, infrastructure, and applications

Application Orientation


- Infrastructure decisions serve applications
 - Interactions within and across infrastructure impact results
- Application patterns must be understood by CP tools
 - Complex applications require the best tools
- Limit efforts to genuine business requirements

Applications Are the Tangible Service to Users

Build software models of application behaviors and infrastructure attributes

Modeling

Simplified Modeling Process

Seek capacity planning vendors with some form of modeling and simulation

© 2003 META Group, Inc., Stamford, CT-USA, +1 (203) 973-6700, metagroup.com 🔊 METAGROUP

Vendor Landscape

Most vendors are small

- BMC is the only serious large vendor
- Expect other large vendors to enter
- Silo-centric offerings will become end-to-end
- M&A activity will increase

Current Vendor Focus on Capacity Planning

BEZ Sys	tems		•	\bigcirc	\bigcirc	•	
BMC Sof		•	•	•	•	\bigcirc	
Compuv	vare	•	•	•	•	•	
HyPerfo		•	•	0	0	0	
OPNET		•	0	•	0	•	
TeamQu		0	•	•	•	•	
Server	Network		Database				

Pressure vendors for end-to-end tools and expect more presence from familiar vendors

TRANSFORMATION STEPS Capacity Planning: Engineering Infrastructure Performance

- Optimize infrastructure performance
 - Follow proven structured engineering processes
 - Understand changing business requirements
- Tackle the complexity of distributed systems
 - Leverage decades of mainframe experience
 - Consider all hardware and software components for a complete end-to-end perspective
- Learn about technology details
 - Develop expertise on the advanced methods used by capacity planning products
 - Employ some level of modeling to combine actual infrastructure and application behaviors with realistic business requirements